Telegram Group & Telegram Channel
Весёлый поиск от Deepmind [2023]

Новость про "первое открытие LLM в математике" взбудоражило публику. Статья очень интересная, но её стоит воспринимать в широком контексте, который я и постараюсь дать.

Есть такая сфера, как оптимизация/поиск программ - мы задаём набор базовых команд и ищем их последовательность, дающую максимальный профит на задаче. Я уже разбирал AutoML-Zero, в которой ищут последовательность векторно-матричных операций, максимизирующую точность нейросети, обученной с её помощью. Тот же подход использовали для создания оптимизатора Lion.

Работает это всё в форме генетического алгоритма. Мы можем легко оценить качество конкретной программы, и у нас есть популяция программ, из которых пробуем создавать новые программы с помощью мутаций. В AutoML-Zero / Lion мутации были случайные - мы добавляли / изменяли / удаляли случайную команду в ней. А это слишком неэффективно и глупо.

Новизна FunSearch именно в том, что авторы нашли способ генерировать мутации сильно лучше, чем рандомно - как раз с помощью LLM. Модели на вход подают контекст задачи и две уже существующие программы, и просят "придумать на их основе более удачную" - это по факту просьба "скрести и добавь мутацию". В результате, генетический алгоритм оптимизирует результат гораздо лучше.

Притом, что сгенерировать такую мутацию гораздо сложнее вычислительно, прирост эффективности и потолок результата выше засчёт того, что мутация с помощью LLM происходит в гораздо более разумном пространстве программ. В статье можно найти сравнение FunSearch и аналога AutoML-Zero, который не смог найти такие же крутые программы.

Добавлю, что есть и альтернатива генетике - это AlphaZero-подход, а именно AlphaTensor и AlphaDev, на счету которых тоже уже есть открытия. При этом важно, что область применения и AlphaZero, и FunSearch весьма специфична, так что, сингулярность ещё не близко.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/139
Create:
Last Update:

Весёлый поиск от Deepmind [2023]

Новость про "первое открытие LLM в математике" взбудоражило публику. Статья очень интересная, но её стоит воспринимать в широком контексте, который я и постараюсь дать.

Есть такая сфера, как оптимизация/поиск программ - мы задаём набор базовых команд и ищем их последовательность, дающую максимальный профит на задаче. Я уже разбирал AutoML-Zero, в которой ищут последовательность векторно-матричных операций, максимизирующую точность нейросети, обученной с её помощью. Тот же подход использовали для создания оптимизатора Lion.

Работает это всё в форме генетического алгоритма. Мы можем легко оценить качество конкретной программы, и у нас есть популяция программ, из которых пробуем создавать новые программы с помощью мутаций. В AutoML-Zero / Lion мутации были случайные - мы добавляли / изменяли / удаляли случайную команду в ней. А это слишком неэффективно и глупо.

Новизна FunSearch именно в том, что авторы нашли способ генерировать мутации сильно лучше, чем рандомно - как раз с помощью LLM. Модели на вход подают контекст задачи и две уже существующие программы, и просят "придумать на их основе более удачную" - это по факту просьба "скрести и добавь мутацию". В результате, генетический алгоритм оптимизирует результат гораздо лучше.

Притом, что сгенерировать такую мутацию гораздо сложнее вычислительно, прирост эффективности и потолок результата выше засчёт того, что мутация с помощью LLM происходит в гораздо более разумном пространстве программ. В статье можно найти сравнение FunSearch и аналога AutoML-Zero, который не смог найти такие же крутые программы.

Добавлю, что есть и альтернатива генетике - это AlphaZero-подход, а именно AlphaTensor и AlphaDev, на счету которых тоже уже есть открытия. При этом важно, что область применения и AlphaZero, и FunSearch весьма специфична, так что, сингулярность ещё не близко.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/139

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Start with a fresh view of investing strategy. The combination of risks and fads this quarter looks to be topping. That means the future is ready to move in.Likely, there will not be a wholesale shift. Company actions will aim to benefit from economic growth, inflationary pressures and a return of market-determined interest rates. In turn, all of that should drive the stock market and investment returns higher.

Importantly, that investor viewpoint is not new. It cycles in when conditions are right (and vice versa). It also brings the ineffective warnings of an overpriced market with it.Looking toward a good 2022 stock market, there is no apparent reason to expect these issues to change.

Knowledge Accumulator from ms


Telegram Knowledge Accumulator
FROM USA